
© Laurie Williams 2004 1

An Introduction to the Unified Modeling Language
A picture is worth a thousand words.

Most people refer to the Unified Modeling Language as UML. The UML is an
international industry standard graphical notation for describing software analysis and
designs. When a standardized notation is used, there is little room for misinterpretation
and ambiguity. Therefore, standardization provides for efficient communication (a.k.a.
“a picture is worth a thousand words”) and leads to fewer errors caused by
misunderstanding.

The U in UML stands for unified because the UML is a unification and standardization of
earlier modeling notations of Booch, Rumbaugh, Jacobson, Mellor, Shlaer, Coad, and
Wirf-Brock, among others. The UML most closely reflects the combined work of
Rumbaugh, Jacobson, and Booch – sometimes called the three amigos. The UML has
been accepted as a standard by the Object Management Group1 (OMG). The OMG is a
non-profit organization with about 700 members that sets standards for distributed object-
oriented computing.

In this appendix, we bring together for ease of reference five fundamental UML models:
use case, class, sequence, state, and activity diagrams. The intent is not for this to be
your only UML reference, but to succinctly provide you with the essential 20% of the
UML that will provide you with the 80% of the capability you will use often.

1. Use Case Diagrams
Use case diagrams are used during requirements elicitation and analysis as a graphical
means of representing the functional requirements of the system. Use cases are
developed during requirements elicitation and are further refined and corrected as they
are reviewed (by stakeholders) during analysis. Use cases are also very helpful for
writing acceptance test cases. The test planner can extract scenarios from the use cases
for test cases. Note: The use case diagram is accompanied by a textual use case flow of
events. The flow of events is not explained in this document.

A use case, a concept invented by Ivar Jocbson (Jacobson, Christerson et al., 1992), is a
sequence of transactions performed by a system that yields an outwardly visible,
measurable result of value for a particular actor. A use case typically represents a major
piece of functionality that is complete from beginning to end (Bruegge and Dutoit, 2000).

In UML, a use case is represented as an ellipse, as shown in Figure 1. In a Monopoly
game, some use cases are: Enter Player Info, Buy House, and Draw Card. Give your use
case a unique name expressed in a few words (generally no more than five words). These
few words must begin with a present-tense verb phrase in active voice, stating the action
that must take place (notice: Enter Player Info, Buy House, Draw Card, and Switch
Turn).

1 For more information on the OMG, see http://www.omg.org

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 2

Figure 1: The UML symbol for a use case

An actor represents whoever or whatever (person, machine, or other) interacts with the
system. The actor is not part of the system itself and represents anyone or anything that
must interact with the system to:

• Input information to the system;
• Receive information from the system; or
• Both input information to and receive information from the system.

The total set of actors in a use case model reflects everything that needs to exchange
information with the system (Rosenberg and Scott, 1999). In UML, an actor is
represented as a stickman, shown below in Figure 2. In a Monopoly game, some actors
are the player and a bad player (who has the audacity to want to take two turns in a row!).
As you see, actors can be people or they can be other systems. The name of an actor is
always a noun. However, the name should not be that of a particular person. Instead, the
name should identify the role or set of roles the actor plays relative to one or more use
cases.

Figure 2: The UML symbol for an actor

A use case diagram is a visual representation of the relationships between actors and use
cases together that documents the system’s intended behavior. A simple use case
diagram is shown in Figure 3.

Arrows and lines are draw between actors and use cases and between use cases to show
their relationships. We discuss these relationships more detail later in this appendix. The
default relationship between an actor and a use case is the «communicates» relationship,
denoted by a line. For example, in Figure 3, the actor is communicating with the use
case.

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 3

Figure 3: A UML use case diagram

There are several different kinds of relationships between actors and use cases. Earlier,
we said that the default relationship is the «communicates» relationship. The
«communicates» relationship indicates that one of these entities initiated invoked a
request of the other. An actor communicates with use cases because actors want
measurable results. It might not be quite as obvious that use cases can communicate with
other use cases. This happens if a case needs information from or to initiate action of
another use case. When a line or an arrow is drawn on a diagram and there is no label on
the arrow, it is, by default, a «communicates» relationship.

There are two other kinds of relationships between use cases (not between actors and use
cases) that you might find useful. These are «include» and «extend». You use the
«include» relationship when a chunk of behavior is similar across more than one use
case, and you don’t want to keep copying the description of that behavior (Bruegge and
Dutoit, 2000). This is similar to breaking out re-used functionality in a program into its
own methods that other methods invoke for the functionality. For example, suppose
many actions of a system require the user to login to the system before the functionality
can be performed. These use cases would include the login use case.

The «include» relationship is not the default relationship. Therefore in a use case
diagram, the arrow is labeled with «include» when one use case makes full use of another
use case, as shown in Figure 4. The Draw Card and the Buy House both use the View
Information functionality.

Player
View Info

Draw Card

Buy House

«include »

«include »

Figure 4: Includes Use Case

You use the «extend» relationship when you are describing a variation on normal
behavior or behavior that is only executed under certain, stated conditions. The extend
relationship is used when the alternative flow is fairly complex and/or multi-stepped,

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 4

possibly with its own sub-flows and alternative flows. For example, consider the players
moving on a Monopoly board.

A player moves on the board because he or she has to go to jail.
A player moves on the board because he or she has to go to Free Parking.

This scenario involves a player moving. However, sometimes a player has to deal with
“exceptional” situations – rather than just moving to a new property cell. Therefore, we
can extend the Move use case with the Go to Jail and the Go to Free Parking use case
(and some others) as shown in Figure 5.

Figure 5: Extends Use Case

It is common to be confused as to whether to use the include relationship or the extend
relationship. Consider the following distinctions between the two:

• Use Case X includes Use Case Y:
 X has a multi-step subtask Y. In the course of doing X or a subtask of X, Y will
always be completed.

• Use Case X extends Use Case Y:
 Y performs a sub-task and X is a similar but more specialized way of
accomplishing that subtask (e.g. closing the door is a sub-task of Y; X provides a
means for closing a blocked door with a few extra steps). X only happens in an
exception situation. Y can complete without X ever happening.

In general, extend relationship makes the use cases difficult to understand. It is suggested
that developers use this relationship sparingly.

2. Class Diagrams
Class diagrams are used in both the analysis and the design phases. During the analysis
phase, a very high-level conceptual design is created. At this time, a class diagram might
be created with only the class names shown or possibly some pseudo code-like phrases
may be added to describe the responsibilities of the class. The class diagram created
during the analysis phase is used to describe the classes and relationships in the problem
domain, but it does not suggest how the system is implemented. By the end of the design
phase, class diagrams that describe how the system to be implemented should be
developed. The class diagram created after the design phase has detailed implementation
information, including the class names, the methods and attributes of the classes, and the
relationships among classes.

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 5

The class diagram describes the types of objects in a system and the various kinds of
static relationships that exist among them (Bruegge and Dutoit, 2000). In UML, a class is
represented by a rectangle with one or more horizontal compartments. The upper
compartment holds the name of the class. The name of the class is the only required field
in a class diagram. By convention, the class name starts with a capital letter. The
(optional) center compartment of the class rectangle holds the list of the class
attributes/data members, and the (optional) lower compartment holds the list of
operations/methods.

The complete UML notation for a class is shown in Figure 6.

ClassName

+ Attribute1
+ Attribute2

+ Operation1 ()
+ Operation2 ()

Figure 6: UML notation for a class

2.1 Static Relationships
There are two principle types of static relationships between classes: inheritance and
association. The relationships between classes are drawn on class diagram by various
lines and arrows.

Inheritance (termed “generalization” for class diagrams) is represented with an empty
arrow, pointing from the subclass to the superclass, as shown in Figure 7. In this figure,
UtilityCell inherits from Cell (a.k.a UtilityCell “is-a” specialized version of a Cell). The
subclass (UtilityCell) inherits all the methods and attributes of the superclass (Cell) and
may override inherited methods.

Figure 7: Generalization

An association represents a relationship between two instances of classes. An association
between two classes is shown by a line joining the two classes. Association indicates that
one class utilizes an attribute or methods of another class. If there is no arrow on the line,
the association is taken to be bi-directional, that is, both classes hold information about
the other class. A unidirectional association is indicated by an arrow pointing from the

Utility Cell

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 6

object which holds to the object that is held. There are two different specialized types of
association relationships: aggregation, and composition.

If the association conveys the information that one object is part of another object, but
their lifetimes are independent (they could exist independently), this relationship is called
aggregation. For example, we may say that “a Department contains a set of Employees,”
or that “a Faculty contains a set of Teachers.” Where generalization can be though of as
an “is-a” relationship, aggregation is often thought of as a “has-a” relationship – “a
Department ’has-a’ Employee.” Aggregation is implemented by means of one class
having an attribute whose type is in included class (the Department class has an attribute
whose type is Employee).

Aggregation is stronger than association due to the special nature of the “has-a”
relationship. Aggregation is unidirectional: there is a container and one or more
contained objects. An aggregation relationship is indicated by placing a white diamond at
the end of the association next to the aggregate class, as shown in Figure 8.

dept employees
1Department Employee *

Figure 8: Aggregation

Even stronger than aggregation is composition. There is composition when an object is
contained in another object, and it can exist only as long as the container exists and it
only exists for the benefit of the container. Examples of composition are the relationship
Invoice-InvoiceLine, and Drawing-Figure. An invoice line can exist only inside an
invoice, and a specific geometric figure only inside a drawing (in the context of a graphic
editor). Any deletion of the whole (Invoice) is considered to cascade to all the parts (the
InvoiceLine’s are deleted).

Composition is shown by a black diamond on the end of association next to the
composite class, as shown in Figure 9. In this figure, we show also the fact that the
relationship between a Gameboard and its Cells can be navigated only from Gameboard
to Cell (an arrow points from Gameboard to Cell). Therefore, this relationship is a
composition, and not an aggregation.

1..*Cell Gameboard 1

Figure 9: Composition

To summarize – aggregation is a special form of association; composition is a stronger
form of aggregation. Both aggregation and composition are a part-whole hierarchy.

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 7

2.2 Attributes and Operations
Attributes or data members are shown in the middle box of the class diagram. It is
optional to show the attributes. When an attribute is included, it is possible to only
specify the name of the attribute. UML notation also allows showing their type (the class
of the data type of the attribute), their default value, and their visibility with respect to
access from outside the class. Public attributes are denoted with a + sign, protected with
a # sign, and private with a -, as shown in Figure 10. The UML syntax for an attribute is:

visibility name : type = defaultValue

protected visibility

public visibility

private visibility

type

-code : String
-maxSpeed : float = 90.0
-length : integer = 60
+defaultLength : integer = 80
#velocity : float = 30.0

Car default value

Figure 10: Notation for attributes

The third and bottom compartment of class symbol in UML notation holds a list of class
operations or methods. The operations are the services that a class is responsible for
carrying out. They may be specified giving their signature (the names and types of their
arguments/parameters), the return type, and their visibility (private, protected, public)
may be shown. An optional property string indicates property values that apply to the
operation. UML notation for operations/methods is shown in Figure 11. The UML
syntax for an operation is:

visibility name(parameter-list) : return-type{property string}

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 8

protected visibility

public visibility

private visibility

return type
+computeSpeed():float
-isStopped():Boolean
-defaultSpeed(trainType:int=1):float
#readFromDB(dbID:String)

Car default value

method name name and type of parameter

Figure 11: UML notation for operations/methods

2.3 Multiplicity
Associations have a multiplicity (sometimes called cardinality) that indicates how many
objects of each class can legitimately be involved in a given relationship. Multiplicity is
expressed by the “n..m” symbol put near to the association line, close to the class whose
multiplicity in the association we want to show. Here “n” refers to the minimum number
of class instances that may be involved in the association, and “m” to the maximum
number of such instances. If n = m, only an “n” is shown. An optional relationship is
expressed by writing “0” as the minimum number. Table 1 shows the most common
cases of multiplicity.

Table 1: Multiplicity notation

Cardinality and modality UML symbol
One-to-one and mandatory 1
One-to-one and optional 0..1
One-to-many and mandatory 1..*
One-to-many and optional *
With lower bound l and upper bound u l..u
With lower bound l and no upper bound l..*

We demonstrate several of the aspects of association and multiplicity in Figure 12 .

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 9

Figure 12: An UML class diagram with three classes, their associations, and multiplicity

Table 2 summarizes the associations between these three classes. Notice the “next” and
“preceding” labels on the Cells association. These are called “roles.” Labeling the end
of associations with role names allows us to distinguish multiple associations originated
from a class and clarify the purpose of the association. (Bruegge and Dutoit, 2000)

Table 2: Details about the associations of Figure 12
Classes of association Kind Information held
Gameboard, Cell Composition A gameboard contains one or more cells. A cell is

contained in one and only one gameboard. The
gameboard can access its sections but the cells do not
need to access their gameboard. The cells cannot
exist in isolation, but only if contained by a
gameboard.

Cell, Cell Association Every Cell is associated with, and must be able to
access, its next Cell and its preceding Cell, along the
Gameboard.

Cell, Player Association A Cell is owned by zero or more Owners. An Owner
owns zero or more Cells. The Cell can access its
Owner, and the Owner can access the Cells it owns.

2.4 More Advanced Class Diagram Concepts
The prior sections on class diagram provided you with most of the information you will
need to create complete diagrams. There are a few more aspects that you might find
helpful for some more advanced diagrams.

2.4.1 Abstract Classes
If you have an abstract class or method, the UML convention is to italicize the name of
the abstract item. You can also label the item with {abstract}.

2.4.2 Packages
If a system is big, it should be partitioned in smaller sub-systems, each with its own class
diagram. In UML notation, the partitions/sub-systems are called packages. A package is
a grouping of model elements, and as such it is a UML construct used also in other UML
diagrams. Packages themselves may be nested within other packages. A package may
contain both subordinate packages and ordinary elements of the class diagram, although
it is not usually a good idea to mix in the same diagram packages and classes.

Gameboard Cell Owner
1
 next

1

preceding

1 1..*
0..* 0..1

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 10

The symbol of two collapsed packages is shown in Figure 13. The name of the package is
placed within the large rectangle. A collapsed package does not show its contents (which
classes are contained in the package) and are used in a higher-level system diagram that
shows all packages composing the system and their dependencies. A package depends on
another package if at least one of its classes depends on the classes of the latter package.

Package 1

Package 2

Figure 13: UML notation for two collapsed packages with a dependency relationship

A package may also be drawn showing its contents. In this case, its name is placed in the
small rectangle on the upper-left side, while a UML class diagram, showing the classes or
the packages contained in it is shown in Figure 14.

GameMaster

+ gameMaster : GameMaster
+ MAX_PLAYER : int
+ dice : Die[]
+ gameBoard : GameBoard
+ gui : MonopolyGUI
+ initAmountOfMoney : int
+ players : Player []
+ turn : int
+ utilDiceRoll : int

+ instance ()
+ GameMaster ()
+ btnBuyHouseClicked ()
+ btnDrawCardClicked ()
+ btnEndTurnClicked ()
+ btnGetOutOfJailClicked ()
+ btnPurchasePropertyClicked ()
+ btnRollDiceClicked ()
+ btnTradeClicked ()
+ completeTrade ()
+ drawCCCard ()
+ drawChanceCard ()
+ getCurrentPlayer ()
+ getCurrentPlayerIndex ()
+ getGameBoard ()
+ getGUI ()
+ getInitAmountOfMoney ()
+ getNumberOfPlayers ()
+ getNumberOfSellers ()
+ getPlayer ()
+ getPlayerIndex ()
+ getSellerList ()
+ getTurn ()
+ getUtilDiceRoll ()
+ movePlayer ()
+ movePlayer ()
+ playerMoved ()
+ reset ()
+ rollDice ()
+ sendToJail ()
+ setAllButtonEnabled ()
+ setGameBoard ()
+ setGUI ()
+ setInitAmountOfMoney ()
+ setNumberOfPlayers ()
+ setUtilDiceRoll ()
+ startGame ()
+ switchTurn ()
+ updateGUI ()
+ utilRollDice ()

MainWindow

GameBoard

- cells : Cell []
- chanceCards : Card []
- colorGroups : Hashtable
- communityChestCards : Card[]
- gameMaster : GameMaster

+ GameBoard ()
+ addCard ()
+ addCell ()
+ addCell ()
+ drawCCCard ()
+ drawChanceCell ()
+ getCell ()
+ getCellNumber ()
+ getPropertiesInMonopoly ()
+ getPropertyNumberForColor ()
+ queryCell ()
+ queryCellIndex ()
+ removeCards ()

GameBoardFull

Card

- TYPE_CHANCE : int
- TYPE_CC : int

+ getLabel ()
+ applyAction ()
+ getCardType ()

Player

+ colorGroups : Hashtable
+ inJail : boolean
+ money : int
+ name : String
+ position : Cell
+ properties : PropertyCell[]
+ railroads : RailRoadCell[]
+ utilities : UtilityCell[]

+ Player ()
+ buyProperty ()
+ canBuyHouse ()
+ checkProperty ()
+ exchangeProperty ()
+ getAllProperties ()
+ getMoney ()
+ getMonopolies ()
+ getName ()
+ getOutOfJail ()
+ getPosition ()
+ getProperty ()
+ getPropertyNumber ()
+ getPropertyNumberForColor ()
+ isBankrupt ()
+ isInJail ()
+ numberOfRR ()
+ numberOfUtil ()
+ payRentTo ()
+ purchase ()
+ purchaseHouse ()
+ purchaseProperty ()
+ purchaseRailRoad ()
+ purchaseUtility ()
+ sellProperty ()
+ setInJail ()
+ setMoney ()
+ setName ()
+ setPosition ()
+ toString ()

Cell

+ available : boolean
+ name : String
+ owner : Player

+ playAction ()
+ getName ()
+ getOwner ()
+ getPrice ()
+ isAvailable ()
+ setAvailable ()
+ setName ()
+ setOwner ()
+ toString ()

UtilityCell

+ COLOR_GROUP : String
+ PRICE : int

+ setPrice ()
+ getPrice ()
+ getRent ()
+ playAction ()

PropertyCell

+ colorGroup : String
+ housePrice : int
+ numHouses : int
+ rent : int
+ sellPrice : int

+ getColorGroup ()
+ getHousePrice ()
+ getNumHouses ()
+ getPrice ()
+ getRent ()
+ playAction ()
+ setColorGroup ()
+ setHousePrice ()
+ setNumHouses ()
+ setPrice ()
+ setRent ()

GoCell

+ GoCell ()
+ playAction ()

JailCell

+ BAIL : int

+ JailCell ()
+ playAction ()

CardCell

+ type : int

+ CardCell ()
+ playAction ()
+ getType ()

FreeParkingCell

+ FreeParkingCell ()
+ playAction ()

RailRoadCell

+ baseRent : int
+ COLOR_GROUP : String
+ price : int

+ setBaseRent ()
+ setPrce ()
+ getPrice ()
+ getRent ()
+ playAction ()

GoToJailCell

+ GoToJailCell ()
+ playAction ()

Die

+ getRoll ()*- dice

*- players

0..1
- gameBoard

0..1
- gameMaster

*
- ccCards

*

- chanceCards

1..*

- cells0..1

- position

0..1

- player

*

- properties

*- railroads

*

- utilities

«interface»
MonopolyGUI

+ enableendTurnBtn ()
+ enablePlayerTurn ()
+ enablePurchaseBtn ()
+ isDrawCardButtonEnabled ()
+ isEndTurnButtonEnabled ()
+ isTradeButtonEnabled ()
+ movePlayer ()
+ openRespondDialog ()
+ openTradeDialog ()
+ setBuyHouseEnabled ()
+ setDrawCardEnabled ()
+ setEndTurnEnabled ()
+ setGetOutOfJailEnabled ()
+ setPurchasePropertyEnabled ()
+ setRollDiceEnabled ()
+ setTradeEnabled ()
+ showBuyHouseDialog ()
+ showMessage ()
+ showUtilDiceRoll ()
+ startGame ()
+ update ()

0..1

- gui

Figure 14: A (non-collapsed) package diagram

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 11

2.4.3 Stereotypes
Stereotypes are a high-level classification of an object that gives you some indication of
the kind of object it is. Classes can be grouped under stereotypes, whose name is written
between matched guillemots (« »), over the class name. Stereotypes can also be shown
with specific icons. All model elements can have stereotypes. For example, common
class stereotypes are:

• «control», a class, an object of which denotes an entity that controls interactions
between a collection of objects;

• «entity», a class that represents a domain-specific situation or a real-world object
and that does not initiate interactions; and

• «boundary», a class that lies on the periphery of a system but within it.

Other stereotypes can be defined by the team within the context of the system to be
developed.

2.4.4 Notes
The class diagram may also include a note which is represented as a rectangle with a
“bent corner” in the upper right corner. Notes are used to “attach” comments and
constraints to the model elements. Notes may appear on any UML diagram and may be
attached to zero or more modeling elements by dashed lines. Notes have no impact on the
model.

2.5 Object Diagrams
UML class diagrams show the classes of the system, their data structure, their
relationships and their interfaces. Ideally, a full UML class diagram show all system
classes, although for practical reasons they are usually partitioned in many class diagrams,
referring to various packages. A UML object diagram, on the other hand, shows a
snapshot of the detailed state of a system at a point in time. A UML object diagram
shows some specific instance of the classes of the system. While there is only class
diagram of the system, there may be hundreds of different object diagrams. In an object
diagram, many different instances of the same class, and no instance of other classes,
may be shown.

Figure 15 shows UML notation for an object. The notation is similar to the class notation,
with three key differences:

• The name of the object is underlined, and is followed by its class name, separated
by a colon. Often, there is no need to explicitly name a class. In this case, only the
colon and the object name are written in the rectangle.

• The attribute compartment may hold a list with the values of relevant attributes of
the object.

• There is no operation compartment.

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 12

instance variables

object name

code = 32
maxSpeed = 100
length = 20
velocity = 60.0

Hummer:Car

object class

values of
variables

Figure 15: UML notation for an object

In object diagrams, the associations among objects are shown as links. A binary link is
shown as a path between two objects. In the case of a reflexive association, it may
involve a loop with a single object.

A role name may be shown at each end of the link. An association name may be shown
near the path; if present, it is underlined to indicate an instance. Multiplicity is not shown
for links because they are instances. Other association adornments (aggregation,
composition, navigation) may be shown on the link roles. A sample object diagram is
shown in Figure 16.

Monopoly:Gameboar

blue1:Cell

readingRR:Cell

waterWorks:Cell

Cell[1] Cell[2] Cell[3]

next
preceding

next
preceding

Figure 16: Object diagram with a Monopoly Gameboard and some specific Cells

3 Sequence Diagrams
Sequence diagrams are used in the analysis and design phases. Sequence diagrams are
often used to depict the chronologically-structured event flow through a use case. By
creating a sequence diagram, the objects that participate in the use case are identified.
Additionally, pieces of the use case behavior are assigned to objects in the form of
services. The process of creating a sequence diagram often results in the refinement of
the use case, potentially identifying missing but desired behaviors.

Sequence diagrams represent a system behavior based upon the needed interactions
among a set of objects in terms of the messages that exchange among them to produce the
desired result. Sequence diagrams highlight the sequence of messages through time.
However, they do not show how objects are linked and may send messages to each other.

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 13

In a sequence diagram, objects are shown in columns, with their object symbol on the top
of the line. Similar to the class diagram, the object name appears in a rectangle. If a class
name is specified, it appears before the colon. The object name always appears after a
colon (even if no class name is specified). If an external actor (see the preceding Use
Case Diagram section above) initiates any interaction, the stick figure can be used rather
than a rectangle.

A sequence diagram has two dimensions: the vertical dimension represents time; the
horizontal dimension represents different objects. Initiation of the sequence starts in the
top-left corner, and time proceeds down the page (from top to bottom). The vertical line
is called the object’s lifeline. There is no significance to the horizontal ordering of the
objects.

A message sent from one object to another is shown as an arrow from the line of the
sender to the line of the receiver. Each message is labeled at a minimum with message
name. You can optionally include the arguments containing information that needs to be
passed with the message. The reception of a message triggers a corresponding operation
to execute. During this execution, other messages may be sent to other objects, and
eventually the methods end. An object may send a message to itself. This is shown by an
arrow from the object line to the same line. The method execution is represented in the
sequence diagram by a thickening of the object line.

Figure 17 shows an example of a player taking a turn in Monopoly. Most sequence
diagrams are concrete and represent one scenario. A scenario is a sequence of actions
that illustrates behavior. A scenario may be used to illustrate an interaction or the
execution of a use case instance. (Rumbaugh, Jacobson et al., 1999)

Figure 17: A sequence diagram representing a player taking a turn

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 14

4 State Diagrams
State diagrams are created during the analysis and design phase to describe the behavior
of nontrivial objects. State diagrams are good for describing the behavior of one object
across several use cases and are used to identify object attributes and to refine the
behavior description of an object.

A state is a condition in which an object can be at some point during its lifetime, for some
finite period of time (Scott, 2001). State diagrams describe all the possible states a
particular object can get into and how the objects state changes as a result of external
events that reach the object. (Fowler, 2000) In this section, we’ll present instead the
notation for state diagrams that was first introduced by Harel (Harel, 1987), and then
adopted by UML. In a state diagram:

• A state is represented by a rounded rectangle.
• A start state is represented by a solid circle.
• A final state is represented by a solid circle with another open circle around it.
• A transition is a change of an object from one state (the source state) to another

(the target state) triggered by events, conditions, or time. Transitions are
represented by an arrow connecting two states.

Figure 18 shows the state diagram of a turn in Monopoly. In a state diagram, when a
transition has no event within its label (such as leading out of InJail and into EndTurn), it
means the event is triggered as soon as any activity associated with the state is complete.
This is called a triggerless transition. Transitions can also be labeled with guards (a
Boolean expression which evaluates to true or false) inside square brackets, such as [trade
accepted]. A guarded transition occurs only if the guard resolves to true. Only one
transition can be taken out of a given state. If more than one guard condition is true, only
one transition will fire. The choice of transition to fire is nondeterministic if no priority
rule is given (Rumbaugh, Jacobson et al., 1999).

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 15

Figure 18: UML State Diagram for a Turn in Monopoly

5 Activity Diagrams
Activity diagrams are used during the design phase of complex methods. Alternately, the
activity diagram can also be used during analysis to break down the complex flow of a
use case. Through an activity diagram, the designer/analyst specifies the essential
sequencing rules the method or use case has to follow.

UML activity diagrams are an updated and enhanced form of flowcharts; the main
enhancement over flowcharts is the ability to handle parallelism, as will be discussed. An
activity diagram is a variation of a state chart, discussed in the prior section, in which the
states are activities representing the performance of operations and the transitions are
triggered by the unconditional completion of the operations. An activity is a single step
that needs to be done, whether by a human or a computer (Fowler, 2000). Incoming
transitions (an incoming arrow) trigger the activity. If there are several incoming
transitions, any of these can trigger the activity independent of the others. (Oestereich,
2001)

Figure 19 shows an activity diagram for preparing corn on the cob. The symbols used in
the diagram are the same as those used in state diagrams with the addition of the decision
symbol and the synchronization bar. The symbol for a decision is the diamond shape,

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 16

with one or more incoming arrows and with two or more outgoing arrows, each labeled
by a distinct guard condition. A guard is a Boolean, logical expression that evaluates to
“true” or “false.” All possible outcomes should appear on one of the outgoing transitions.

The synchronization bar indicates that progress cannot proceed past the bar until all
activities leading up to the bar have completed (the outbound trigger occurs only when all
inbound triggers have occurred). The synchronization bar allows the activity diagram to
be able to be used for concurrent programs. The designer can lay out the threads and
when they need to synchronize.

Additionally, activity diagrams allow for parallelism, when the order of the ensuing
activities is irrelevant (they can run consecutively, simultaneously, or alternately). For
example in Figure 19, after the corn is boiled and the butter is melted, two things happen
in parallel (the salt and the butter are put on the corn).

In the case that there is more than one possible final states, the various final states should
be labeled with a name.

Pour salt on corn Pour melted button on corn

Boil corn

Melt the butter
Boil the water

[butter melted]

[butter not melted]

Figure 19: An activity diagram explaining how to prepare corn on the cob

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 17

We can use swimlanes in activity diagrams to specify “who” does what (where the “who”
could be a particular role or a particular class). To use swimlanes, you must arrange your
activity diagrams into vertical zones separated by dashed lines, as shown in Figure 20.
The swimlanes indicate that “corn operator” is in charge of preparing the corn and putting
the salt on. “Butter expert” melts the butter and pours it on the corn. Swimlanes are
good in that they combine the activity diagram’s depiction of logic and assign
responsibility, as does the sequence diagram.

Corn Operator Butter Expert

Pour salt on corn Pour melted butter on corn

Boil the corn

Melt the butter
Boil the water

[butter melted]

[butter not melted]

Figure 20: An activity diagram with swimlanes

References

Bruegge, B. and A. H. Dutoit (2000). Object-Oriented Software Engineering:

Conquering Complex and Changing Systems. Upper Saddle River, NJ, Prentice
Hall.

Fowler, M. (2000). UML Distilled. Reading, Massachusetts, Addison Wesley.
Harel, D. (1987). "Statecharts: A visual formalism for complex systems." Science of

Computer Programming: 231-274.
Jacobson, I., M. Christerson, et al. (1992). Object-Oriented Software Engineering: A Use

Case Driven Approach. Wokingham, England, Addison-Wesley.

An Introduction to the Unified Modeling Language

© Laurie Williams 2004 18

Oestereich, B. (2001). Developing Software with UML: Object-Oriented Analysis and
Design in Practice. London, Person Education.

Rosenberg, D. and K. Scott (1999). Use Case Driven Object Modeling with UML: A
Practical Approach. Reading, Massachusetts, Addison-Wesley.

Rumbaugh, J., I. Jacobson, et al. (1999). The Unified Modeling Language Reference
Manual. Boston, Addison Wesley.

Scott, K. (2001). UML Explained. Boston, Massachusetts, Addison-Wesley.

